Mobile sensor networks for modelling environmental pollutant distribution
نویسندگان
چکیده
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. This article proposes to deploy a group of mobile sensor agents to cover a polluted region so that they are able to retrieve the pollutant distribution. The deployed mobile sensor agents are capable of making point observation in the natural environment. There are two approaches to modelling the pollutant distribution proposed in this article. One is a model-based approach where the sensor agents sample environmental pollutant, build up an environmental pollutant model and move towards the region where high density pollutant exists. The modelling technique used is a distributed support vector regression and the motion control technique used is a distributed locational optimising algorithm (centroidal Voronoi tessellation). The other is a model-free approach where the sensor agents sample environmental pollutant and directly move towards the region where high density pollutant exists without building up a model. The motion control technique used is a bacteria chemotaxis behaviour. By combining this behaviour with a flocking behaviour, it is possible to form a spatial distribution matched to the underlying pollutant distribution. Both approaches are simulated and tested with a group of real robots. 1. Introduction Environmental pollutant distribution is a spatial phenomenon. Modelling spatial phenomena requires a distributed sensing capability of wireless mobile sensor networks. There has been a number of research projects in climatology, forestry and oceanography for modelling environmental spatial phenomena Leonard et al. 2007). The distribution nature of mobile sensor agents in the natural environment could be used to monitor pollutants more efficiently and reliably, and could also be used to form a visual representation of the pollutant. The importance of forming a visual representation of the pollutant becomes more obvious if the pollutant is invisible and hazardous to human health. Such visual information could enable …
منابع مشابه
3D Path Planning Algorithm for Mobile Anchor-Assisted Positioning in Wireless Sensor Networks
Positioning service is one of Wireless Sensor Networks’ (WSNs) fundamental services. The accurate position of the sensor nodes plays a vital role in many applications of WSNs. In this paper, a 3D positioning algorithm is being proposed, using mobile anchor node to assist sensor nodes in order to estimate their positions in a 3D geospatial environment. However, mobile anchor node’s 3D path optim...
متن کاملAn efficient solution for management of pre-distribution in wireless sensor networks
A sensor node is composed of different parts including processing units, sensor, transmitter, receiver, and security unit. There are many nodes in a sensor unit. These networks can be used for military, industrial, medicine, environmental, house, and many other applications. These nodes may be established in the lands of enemies to monitor the relations. Hence, it is important to consider conse...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملMobile sensor networks for optimal leak and backflow detection and localization in municipal water networks
Leak and backflow detections are essential aspects of Water Distribution Systems (WDSs) monitoring and are commonly fulfilled using approaches that are based on static sensor networks and point measurements. Alternatively, we propose a mobile, wireless sensor network solution composed of mobile sensor nodes that travel freely inside the pipes with the water flow, collect and transmit measuremen...
متن کاملRepresenting a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors
Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Systems Science
دوره 42 شماره
صفحات -
تاریخ انتشار 2011